Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
J Med Food ; 27(4): 287-300, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38442325

RESUMEN

Secondary osteoporosis is frequently due to the use of high-dose glucocorticoids (GCs). The existing strategy for managing glucocorticoid-induced osteoporosis (GIOP) is considered insufficient and remains in a state of ongoing evolution. Therefore, it is crucial to develop more precise and effective agents for the treatment of GIOP. The constituents of Reynoutria multiflora (Thunb.) Moldenke, specifically Polygonum multiflorum (PM) Thunb, have previously shown promise in mitigating osteopenia. This study aimed to investigate the therapeutic effects of an ethanolic PM extract (PMR30) against GIOP in male rats. Prednisone (6 mg/kg/day, GC) was continuously administered to rats to induce GIOP, and they were subjected to treatment with or without ethanolic PMR30 for a duration of 120 days. Serum was collected for biochemical marker analysis. Bone histomorphometric, histological, and TUNEL analyses were performed on tibia samples. The protein expressions of LC3, Agt5, and Beclin 1 in the femur underwent examination through western blotting. Prolonged and excessive GC treatment significantly impeded bone formation, concomitant with reduced bone mass and body weight. It also suppressed OCN and OPG/RANKL in serum, and decreased Beclin 1 and LC3 in bone. Simultaneously, there was an elevation in bone resorption markers and apoptosis. Treatments with both high dose and low dose of PMR30 alleviated GIOP, stimulated bone formation, and upregulated OCN and OPG/RANKL, while suppressing TRACP-5b, CTX-I, and apoptosis. The impact of PMR30 possibly involves the enhancement of autophagy proteins (LC3, Agt5, and Beclin 1) and the inhibition of apoptosis within the bone. PMR30 holds promise as a prospective therapeutic agent for preventing and treating GIOP.


Asunto(s)
Fallopia multiflora , Osteoporosis , Ratas , Masculino , Animales , Glucocorticoides/efectos adversos , Reynoutria , Beclina-1 , Osteoporosis/inducido químicamente , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo
2.
Mar Drugs ; 22(2)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38393066

RESUMEN

The balance between bone-resorbing osteoclasts and bone-forming osteoblasts is essential for the process of bone remodeling. Excessive osteoclast differentiation plays a pivotal role in the pathogenesis of bone diseases such as rheumatoid arthritis and osteoporosis. In the present study, we examined whether 7,8-epoxy-11-sinulariolide acetate (Esa), a marine natural product present in soft coral Sinularia siaesensis, attenuates inflammation and osteoclastogenesis in vitro. The results indicated that Esa significantly inhibited lipopolysaccharide (LPS)-induced inflammation model of RAW264.7 cells and suppressed receptor activator for nuclear factor-κB ligand (RANKL)-triggered osteoclastogenesis. Esa significantly down-regulated the protein expression of iNOS, COX-2, and TNF-α by inhibiting the NF-κB/MAPK/PI3K pathways and reducing the release of reactive oxygen species (ROS) in RAW264.7 macrophages. Besides, Esa treatment significantly inhibited osteoclast differentiation and suppressed the expression of osteoclast-specific markers such as NFATC1, MMP-9, and CTSK proteins. These findings suggest that Esa may be a potential agent for the maintenance of bone homeostasis associated with inflammation.


Asunto(s)
Antozoos , Resorción Ósea , Diterpenos , Animales , Osteogénesis , Fosfatidilinositol 3-Quinasas/metabolismo , Diferenciación Celular , Osteoclastos , FN-kappa B/metabolismo , Inflamación/metabolismo , Antozoos/metabolismo , Ligando RANK/metabolismo , Factores de Transcripción NFATC/metabolismo
3.
Aging Dis ; 15(2): 640-697, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37450923

RESUMEN

Various diseases, including cancers, age-associated disorders, and acute liver failure, have been linked to the oncogene, MYC. Animal testing and clinical trials have shown that sustained tumor volume reduction can be achieved when MYC is inactivated, and different combinations of therapeutic agents including MYC inhibitors are currently being developed. In this review, we first provide a summary of the multiple biological functions of the MYC oncoprotein in cancer treatment, highlighting that the equilibrium points of the MYC/MAX, MIZ1/MYC/MAX, and MAD (MNT)/MAX complexes have further potential in cancer treatment that could be used to restrain MYC oncogene expression and its functions in tumorigenesis. We also discuss the multifunctional capacity of MYC in various cellular cancer processes, including its influences on immune response, metabolism, cell cycle, apoptosis, autophagy, pyroptosis, metastasis, angiogenesis, multidrug resistance, and intestinal flora. Moreover, we summarize the MYC therapy patent landscape and emphasize the potential of MYC as a druggable target, using herbal medicine modulators. Finally, we describe pending challenges and future perspectives in biomedical research, involving the development of therapeutic approaches to modulate MYC or its targeted genes. Patients with cancers driven by MYC signaling may benefit from therapies targeting these pathways, which could delay cancerous growth and recover antitumor immune responses.


Asunto(s)
Productos Biológicos , Neoplasias , Animales , Humanos , Genes myc , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Represoras/genética , Productos Biológicos/farmacología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Transducción de Señal , Neoplasias/tratamiento farmacológico
4.
Exp Gerontol ; 185: 112347, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38097054

RESUMEN

Type 2 diabetes (T2D) is a common chronic disease, characterized by persistent hyperglycemia and insulin resistance. This disorder is associated with decreased bone quality and an elevated risk of bone fractures. However, evidence on the relationship between systemic metabolic change and the development of type 2 diabetic osteoporosis (T2DOP) remains elusive. Herein, we investigate the changes of bone metabolites with bone loss in db/db mice (an animal model of T2DOP exhibited bone loss with age progression), and explore the potential metabolic mechanism underlying type 2 diabetes and osteoporosis. C57BKS male mice were distributed in four groups, consisting six mice in each group: 8w m/m, 24w m/m, 8w db/db and 24w db/db. Bone morphometric and biomechanical parameters of db/db mice were analyzed by micro-CT and materials tester, it was found that 24w db/db mice showed severe bone loss and decreased bone tissue hardness compared with misty/misty littermates. The tibia of misty/misty mice (8 weeks, 24 weeks) and db/db mice (8 weeks, 24 weeks) were screened for differential metabolites by UPLC-Orbitrap MS. Ninety-eight metabolites were identified (35 and 63 metabolites are associated with early staged and late staged, respectively), consisting of amino acids, fatty acyls, and nucleotides. Notably, fatty acyls (such as 18-HEPE, 16(17)-EpDPE, arachidonic acid) and glycerophospholipids (such as phosphocholines (PC) (O-10:1(9E)/0:0), PC (O-16:1(9E)/0:0) [U] and phosphatidylethanolamines (PE) (P-16:0/0:0)) were significantly increased, and metabolites of amino acid pathway (such as l-glutamine, proline, phenylalanine) showed a downregulation trend. Dysregulation of lipid and glutathione pathways is the major contributor to progression of T2DOP in C57BKS mice.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Resistencia a la Insulina , Osteoporosis , Masculino , Ratones , Animales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Metaboloma , Osteoporosis/etiología , Aminoácidos
5.
Front Pharmacol ; 14: 1276038, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38116081

RESUMEN

Salvia miltiorrhiz, commonly known as "Danshen" in Chinese medicine, has longstanding history of application in cardiovascular and cerebrovascular diseases. Renowned for its diverse therapeutic properties, including promoting blood circulation, removing blood stasis, calming the mind, tonifying the blood, and benefiting the "Qi", recent studies have revealed its significant positive effects on bone metabolism. This potential has garnered attention for its promising role in treating musculoskeletal disorders. Consequently, there is a high anticipation for a comprehensive review of the potential of Salvia miltiorrhiza in the treatment of various musculoskeletal diseases, effectively introducing an established traditional Chinese medicine into a burgeoning field. AIM OF THE REVIEW: Musculoskeletal diseases (MSDs) present significant challenges to healthcare systems worldwide. Previous studies have demonstrated the high efficacy and prospects of Salvia miltiorrhiza and its active ingredients for treatment of MSDs. This review aims to illuminate the newfound applications of Salvia miltiorrhiza and its active ingredients in the treatment of various MSDs, effectively bridging the gap between an established medicine and an emerging field. METHODS: In this review, previous studies related to Salvia miltiorrhiza and its active ingredients on the treatment of MSD were collected, the specific active ingredients of Salvia miltiorrhiza were summarized, the effects of Salvia miltiorrhiza and its active ingredients for the treatment of MSDs, as well as their potential molecular mechanisms were reviewed and discussed. RESULTS: Based on previous publications, Salvianolic acid A, salvianolic acid B, tanshinone IIA are the representative active ingredients of Salvia miltiorrhiza. Their application has shown significant beneficial outcomes in osteoporosis, fractures, and arthritis. Salvia miltiorrhiza and its active ingredients protect against MSDs by regulating different signaling pathways, including ROS, Wnt, MAPK, and NF-κB signaling. CONCLUSION: Salvia miltiorrhiza and its active ingredients demonstrate promising potential for bone diseases and have been explored across a wide variety of MSDs. Further exploration of Salvia miltiorrhiza's pharmacological applications in MSDs holds great promise for advancing therapeutic interventions and improving the lives of patients suffering from these diseases.

6.
J Orthop Translat ; 40: 132-146, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37457309

RESUMEN

Background: Eurycomanone (EN) is a diterpenoid compound isolated from the roots of Eurycoma longifolia (E. longifolia). Previous studies have confirmed that E. longifolia can enhance bone regeneration and bone strength. We previously isolated and identified ten quassinoids from E. longifolia, and the result displayed that five aqueous extracts have the effects on promotion of bone formation, among whom EN showed the strongest activity. However, the molecular mechanism of EN on bone formation was unknown, and we further investigated in this study. Methods: After the verification of purity of extracted EN, following experiments were conducted. Firstly, the pharmacologic action of EN on normal bone mineralization and the therapeutic effect of EN on Dex-induced bone loss using zebrafish larvae. The mineralization area and integral optical density (IOD) were evaluated using alizarin red staining. Then the vital signaling pathways of EN relevant to OP was identified through network pharmacology analysis. Eventually in vitro, the effect of EN on cell viability, osteogenesis activities were investigated in human bone marrow mesenchymal stem cells (hMSCs) and C3H10 cells, and the molecular mechanisms by which applying AKT inhibitor A-443654 in hMSCs. Results: In zebrafish larvae, the administration in medium of EN (0.2, 1, and 5 µM) dramatically enhanced the skull mineralization area and integral optical density (IOD), and increased mRNA expressions of osteoblast formation genes (ALP, RUNX2a, SP7, OCN). Meanwhile, exposure of EN remarkably alleviated the inhibition of bone formation induced by dexamethasone (Dex), prominently improved the mineralization, up-regulated osteoblast-specific genes and down-regulated osteoclast-related genes (CTSK, RANKL, NFATc1, TRAF6) in Dex-treated bone loss zebrafish larvae. Network pharmacology outcomes showed the MAPK and PI3K-AKT signaling pathways are closely associated with 10 hub genes (especially AKT1), and AKT/GSK-3ß/ß-catenin was selected as the candidate analysis pathway. In hMSCs and C3H10 cells, results showed that EN at appropriate concentrations of 0.008-5 µM effectively increased the cell proliferation. In addition, EN (0.04, 0.2, and 1 µM) significantly stimulated osteogenic differentiation and mineralization as well as significantly increased the protein phosphorylation of AKT and GSK-3ß, and expression of ß-catenin, evidencing by the results of ALP and ARS staining, qPCR and western blotting. Whereas opposite results were presented in hMSCs when treated with AKT inhibitor A-443654, which effectively inhibited the pro-osteogenesis effect induced by EN, suggesting EN represent powerful potential in promoting osteogenesis of hMSCs, which may be closely related to the AKT/GSK-3ß/ß-catenin signaling pathway. Conclusions: Altogether, our findings indicate that EN possesses remarkable effect on bone formation via activating AKT/GSK-3ß/ß-catenin signaling pathway in most tested concentrations. The translational potential of this article: This study demonstrates EN is a new effective monomer in promoting bone formation, which may be a promising anabolic agent for osteoporosis (OP) treatment.

7.
J Orthop Translat ; 40: 37-48, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37304218

RESUMEN

Background: Osteopenia and fragile fractures are diabetes-associated complications. Many hypoglycemic drugs have effects on bone metabolism. Metformin, as is a prescribed medication for type 2 diabetes mellitus (T2DM), had been reported to have osteoprotective effects beyond its hypoglycemic effect, however the potential mechanism behind these effects remains unclear. In this study, we aimed to investigate the comprehensive effects of metformin on bone metabolism in T2DM rat model and elucidate the potential mechanism. Methods: Goto-Kakizaki spontaneous T2DM rats with significant hyperglycemia were treated with/without metformin for 20 weeks. Glucose tolerance was tested and all rats were weighed every two weeks. The osteoprotective effects of metformin in diabetic rats were determined by quantifying serum bone biomarkers, µ-CT imaging, histological staining, bone histomorphometry, and biomechanical properties analyses. Potential targets of metformin in the treatment of T2DM and osteoporosis were predicted using network pharmacology. The effects of metformin on mesenchymal stem cells (C3H10) cultured in high glucose medium were evaluated by CCK-8 assay, alkaline phosphatase (ALP) staining, qPCR and western blotting. Results: This study demonstrated that metformin significantly attenuated osteopenia, decreased serum glucose and glycated serum protein (GSP) levels, improved bone microarchitecture, and biomechanical properties in GK rats with T2DM. Metformin significantly increased biomarkers of bone formation, and significantly decreased muscle ubiquitin C (Ubc) expression. Network pharmacology analysis found that signal transducer and activator of transcription1 (STAT1) would be a potential target of metformin for regulating bone metabolism. Metformin increased C3H10 â€‹cell viability in vitro, alleviated ALP inhibition caused by hyperglycemia, increased the osteogenic gene expression of runt-related transcription factor 2 (RUNX2), collagen type I alpha 1 (Col1a1), osteocalcin (OCN), and ALP, while suppressing RAGE and STAT1 expression. Metformin also increased the protein expression of Osterix and decreased that of RAGE, p-JAK2, and p-STAT1. Conclusions: Our results demonstrate that metformin attenuated osteopenia and improved bone microarchitecture in GK rats with T2DM and significantly promoted stem cell osteogenic differentiation under high glucose condition. The effects of metformin on bone metabolism are closely associated with the suppression of RAGE-JAK2-STAT1 signaling axis. The translational potential of this article: Our research provides experiment evidence and potential mechanistic rationale for the use of metformin as an effective candidate for diabetes-induced osteopenia treatment.

8.
J Drug Target ; 31(7): 762-775, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37358309

RESUMEN

Tanshinol (Tan) has good therapeutic effects on osteoporosis, fracture, and bone trauma repair. However, it is easily oxidised, has low bioavailability and a short half-life. To solve these problems, the study aimed to develop a novel bone-targeted nano-sustained-release drug delivery system PSI-HAPs for the systemic administration of Tan. This proposed system has hydroxyapatite (HAP) as the core to load drug and polysuccinimide (PSI), PEG-PSI (Polyethylene glycol, PEG), and ALN-PEG-PSI (Alendronate sodium, ALN) as the coating materials to form nanoparticles. The article examines the various PSI-HAPs' entrapping efficiency (EE, %), drug loading capacity (DLC, %), and distribution to determine the best PSI-HAP formulation in vivo. The in vivo experiment showed that the ALN-PEG-PSI-HAP (ALN-PEG/PSI molar ratio = 1:20) was the best preparation due to its higher distribution on bone (120 h) and lower distribution in the other tissues. The determined preparation was a uniformly spherical or sphere-like nanoparticle with a negative zeta potential. Additionally, it exhibited pH-sensitive drug release in PBS based on an in vitro drug release test. The proposed PSI-HAP preparations were prepared in the water solution using a facile preparation process without ultrasound, heating, and other conditions, which can significantly affect the stability of drugs.


Asunto(s)
Sistema de Administración de Fármacos con Nanopartículas , Nanopartículas , Durapatita/química , Huesos , Polietilenglicoles/química , Nanopartículas/química , Liberación de Fármacos
9.
Adv Sci (Weinh) ; 10(19): e2301348, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37078794

RESUMEN

Ischemic stroke is a refractory disease that endangers human health and safety owing to cerebral ischemia. Brain ischemia induces a series of inflammatory reactions. Neutrophils migrate from the circulatory system to the site of cerebral ischemia and accumulate in large numbers at the site of inflammation across the blood-brain barrier. Therefore, hitchhiking on neutrophils to deliver drugs to ischemic brain sites could be an optimal strategy. Since the surface of neutrophils has a formyl peptide receptor (FPR), this work modifies a nanoplatform surface by the peptide cinnamyl-F-(D)L-F-(D)L-F (CFLFLF), which can specifically bind to the FPR receptor. After intravenous injection, the fabricated nanoparticles effectively adhered to the surface of neutrophils in peripheral blood mediated by FPR, thereby hitchhiking with neutrophils to achieve higher accumulation at the inflammatory site of cerebral ischemia. In addition, the nanoparticle shell is composed of a polymer with reactive oxygen species (ROS)-responsive bond breaking and is encased in ligustrazine, a natural product with neuroprotective properties. In conclusion, the strategy of hitching the delivered drugs to neutrophils in this study could improve drug enrichment in the brain, thereby providing a general delivery platform for ischemic stroke or other inflammation-related diseases.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Nanopartículas , Daño por Reperfusión , Humanos , Neutrófilos/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo
10.
Front Endocrinol (Lausanne) ; 14: 1119427, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37082116

RESUMEN

Long-term or supra-physiological dose of glucocorticoid (GC) application in clinic can lead to impaired bone growth and osteoporosis. The side effects of GC on the skeletal system are particularly serious in growing children, potentially causing growth retardation or even osteoporotic fractures. Children's bone growth is dependent on endochondral ossification of growth plate chondrocytes, and excessive GC can hinder the development of growth plate and longitudinal bone growth. Despite the availability of drugs for treating osteoporosis, they have failed to effectively prevent or treat longitudinal bone growth and development disorders caused by GCs. As of now, there is no specific drug to mitigate these severe side effects. Traditional Chinese Medicine shows potential as an alternative to the current treatments by eliminating the side effects of GC. In summary, this article comprehensively reviews the research frontiers concerning growth and development disorders resulting from supra-physiological levels of GC and discusses the future research and treatment directions for optimizing steroid therapy. This article may also provide theoretical and experimental insight into the research and development of novel drugs to prevent GC-related side effects.


Asunto(s)
Osteoporosis , Fracturas Osteoporóticas , Humanos , Niño , Glucocorticoides/uso terapéutico , Osteoporosis/inducido químicamente , Osteoporosis/tratamiento farmacológico , Huesos , Condrocitos , Fracturas Osteoporóticas/inducido químicamente
11.
Nutrients ; 14(19)2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36235637

RESUMEN

Lipids affect cartilage growth, injury, and regeneration in diverse ways. Diet and metabolism have become increasingly important as the prevalence of obesity has risen. Proper lipid supplementation in the diet contributes to the preservation of cartilage function, whereas excessive lipid buildup is detrimental to cartilage. Lipid metabolic pathways can generate proinflammatory substances that are crucial to the development and management of osteoarthritis (OA). Lipid metabolism is a complicated metabolic process involving several regulatory systems, and lipid metabolites influence different features of cartilage. In this review, we examine the current knowledge about cartilage growth, degeneration, and regeneration processes, as well as the most recent research on the significance of lipids and their metabolism in cartilage, including the extracellular matrix and chondrocytes. An in-depth examination of the involvement of lipid metabolism in cartilage metabolism will provide insight into cartilage metabolism and lead to the development of new treatment techniques for metabolic cartilage damage.


Asunto(s)
Cartílago Articular , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Metabolismo de los Lípidos , Lípidos , Regeneración
12.
Front Bioeng Biotechnol ; 10: 1022330, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204469

RESUMEN

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide. Emerging therapies, such as ferroptosis mediated cancer therapy and phototherapy, offer new opportunities for HCC treatment. The combination of multiple treatments is often more effective than monotherapy, but many of the current treatments are prone to serious side effects, resulting in a serious decline in patients' quality of life. Therefore, the combination therapy of tumor in situ controllable activation will improve the efficacy and reduce side effects for precise treatment of tumor. Herein, we synthesized a GSH-activatable nanomedicine to synergize photothermal therapy (PTT) and ferrotherapy. We utilized a near-infrared dye SQ890 as both an iron-chelating and a photothermal converter agent, which was encapsulated with a GSH-sensitive polymer (PLGA-SS-mPEG), to attain the biocompatible SQ890@Fe nanoparticles (NPs). In the tumor microenvironment (TME), SQ890@Fe NPs showed a GSH-activated photothermal effect that could increase the Fenton reaction rate. Meanwhile, the depletion of GSH could further increase ferroptosis effect. In turn, the increasing radical generated by ferrotherapy could impair the formation of heat shock proteins (HSPs) which could amplify PTT effects by limiting the self-protection mechanism. Overall, the intelligent nanomedicine SQ890@Fe NPs combines ferrotherapy and PTT to enhance the efficacy and safety of cancer treatment through the mutual promotion of the two treatment mechanisms, providing a new dimension for tumor combination therapy.

13.
Bioengineering (Basel) ; 9(10)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36290493

RESUMEN

We develop a poly (lactic-co-glycolic acid)/ß-calcium phosphate (PLGA/TCP)-based scaffold through a three-dimensional (3D) printing technique incorporating icaritin (ICT), a unique phytomolecule, and secretome derived from human fetal mesenchymal stem cells (HFS), to provide mechanical support and biological cues for stimulating bone defect healing. With the sustained release of ICT and HFS from the composite scaffold, the cell-free scaffold efficiently facilitates the migration of MSCs and promotes bone regeneration at the femoral defect site in the ovariectomy (OVX)-induced osteoporotic rat model. Furthermore, mechanism study results indicate that the combination of ICT and HFS additively activates the Integrin-FAK (focal adhesion kinase)-ERK1/2 (extracellular signal-regulated kinase 1/2)-Runx2 (Runt-related transcription factor 2) axis, which could be linked to the beneficial recruitment of MSCs to the implant and subsequent osteogenesis enhancement. Collectively, the PLGA/TCP/ICT/HFS (P/T/I/S) bioactive scaffold is a promising biomaterial for repairing osteoporotic bone defects, which may have immense implications for their translation to clinical practice.

14.
Chem Biol Interact ; 367: 110140, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36087817

RESUMEN

Phytochemicals with bone formation potential in traditional medicines captured more and more attentions due to their advantages to bone loss and fewer side effects. As a famous aphrodisiac phytomedicine, Eurycoma longifolia (EL) has acquired general recognition in improving male sexual health, and thus been considered as traditional medicine for the treatment of androgen-deficient osteoporosis. Although the aqueous extract of EL had been proved to be beneficial to bone loss, the active constituents and the mechanisms underlying the effects are still obscure. The current study performed a chemical investigation on the roots of EL, which resulted in the isolation and identification of ten quassinoids (EL-1-EL-10), and then conducted their osteogenic activity evaluations in vivo zebrafish model with or without dexamethasone (Dex) and in vitro C3H10 cell model. The result displayed that most tested concentrations of EL-1-EL-5 could significantly increase the mineralization areas and integrated optical densities (IODs) of skull in both zebrafish model. The majority tested concentrations of EL-1-EL-5 could also improve the mRNA expression of early osteogenic associated genes ALPL, Runx2a, Sp7 in zebrafish model without Dex, but only a few could accelerate the mRNA expression of late osteogenic associated genes OCN. These results suggested the ability of EL-1-EL-5 to increase bone formation mainly by accelerating osteogenic differentiation at the early stage. The structure-based virtual screening based on the pharmacophores in ePharmaLib, as well as the molecular docking study, implied that the effects of the quassinoids (EL-1-EL-5) on the enhancement of bone formation might be related with improving the content and the activity of androgen through binding with CYP19A, SHBG and AKR1C2, and activating bone metabolism-related ANDR target genes and signal pathways by combining with ANDR directly. Although the assumptions are in silico model-based and further in vitro and in vivo validations are still necessary, we provided a new perspective to explore the potential of EL to be used as an alternative treatment for not only androgen-deficient osteoporosis, but also estrogen-deficient bone loss, by combining with SHBG.


Asunto(s)
Afrodisíacos , Eurycoma , Osteoporosis , Cuassinas , Andrógenos , Animales , Afrodisíacos/uso terapéutico , Dexametasona , Estrógenos , Eurycoma/química , Masculino , Simulación del Acoplamiento Molecular , Osteogénesis , Osteoporosis/metabolismo , Extractos Vegetales/química , Cuassinas/química , Cuassinas/farmacología , ARN Mensajero , Pez Cebra
15.
RSC Adv ; 12(31): 20199-20205, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35919587

RESUMEN

An efficient three-component one-pot and operationally simple cascade of 2-aminopyridines with sulfonyl azides and terminal ynones is reported, providing a variety of polysubstituted imidazo[1,2-a]pyridine derivatives in moderate to excellent yields. In particular, the reaction goes a through CuAAC/ring-cleavage process and forms a highly active intermediate α-acyl-N-sulfonyl ketenimine with base free.

16.
Drug Des Devel Ther ; 16: 1311-1347, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35547865

RESUMEN

Drug delivery for osteoarthritis (OA) treatment is a continuous challenge because of their poor bioavailability and rapid clearance in joints. Intra-articular (IA) drug delivery is a common strategy and its therapeutic effects depend mainly on the efficacy of the drug-delivery system used for OA therapy. Different types of IA drug-delivery systems, such as microspheres, nanoparticles, and hydrogels, have been rapidly developed over the past decade to improve their therapeutic effects. With the continuous advancement in OA mechanism research, new drugs targeting specific cell/signaling pathways in OA are rapidly evolving and effective drug delivery is critical for treating OA. In this review, recent advances in various IA drug-delivery systems for OA treatment, OA targeted strategies, and related signaling pathways in OA treatment are summarized and analyzed based on current publications.


Asunto(s)
Nanopartículas , Osteoartritis de la Rodilla , Sistemas de Liberación de Medicamentos , Humanos , Hidrogeles , Inyecciones Intraarticulares , Osteoartritis de la Rodilla/tratamiento farmacológico
17.
Med Res Rev ; 42(3): 1246-1279, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35028953

RESUMEN

Immunotherapy sheds new light to cancer treatment and is satisfied by cancer patients. However, immunotoxicity, single-source antibodies, and single-targeting stratege are potential challenges to the success of cancer immunotherapy. A huge number of promising lead compounds for cancer treatment are of natural origin from herbal medicines. The application of natural products from herbal medicines that have immunomodulatory properties could alter the landscape of immunotherapy drastically. The present study summarizes current medication for cancer immunotherapy and discusses the potential chemicals from herbal medicines as immune checkpoint inhibitors that have a broad range of immunomodulatory effects. Therefore, this review provides valuable insights into the efficacy and mechanism of actions of cancer immunotherapies, including natural products and combined treatment with immune checkpoint inhibitors, which could confer an improved clinical outcome for cancer treatment.


Asunto(s)
Productos Biológicos , Neoplasias , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Humanos , Inhibidores de Puntos de Control Inmunológico , Inmunomodulación , Inmunoterapia , Neoplasias/terapia
18.
Front Endocrinol (Lausanne) ; 13: 1038603, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36714564

RESUMEN

Aims: Increasing evidence suggests that metformin can affect bone metabolism beyond its hypoglycemic effects in diabetic patients. However, the effects of metformin on fracture risk in type 2 diabetes mellitus (T2DM) patients remain unclear. A systematic review and meta-analysis were performed in this study to evaluate the association between metformin application and fracture risk in T2DM patients based on previous studies published until June 2021. Methods: A systematic search was performed to collect publications on metformin application in T2DM patients based on PubMed, Embase, Cochran, and Web of Science databases. Meta-analysis was performed by using a random-effects model to estimate the summary relative risks (RRs) with 95% confidence intervals (CIs). Subgroup analyses based on cohort/case-control and ethnicity and sensitivity analyses were also performed. Results: Eleven studies were included in the meta-analysis. Results demonstrated metformin use was not significantly associated with a decreased risk of fracture (RR, 0.91; 95% CI, 0.81-1.02; I2 = 96.8%). Moreover, metformin use also demonstrated similar results in subgroup analyses of seven cohort studies and four case-control studies, respectively (RR, 0.90; 95% CI, 0.76-1.07; I2 = 98.0%; RR, 0.96; 96% CI, 0.89-1.03; I2 = 53.7%). Sensitivity analysis revealed that there was no publication bias. Conclusion: There was no significant correlation between fracture risk and metformin application in T2DM patients. Due to a limited number of existing studies, further research is needed to make a definite conclusion for clinical consensus.


Asunto(s)
Diabetes Mellitus Tipo 2 , Fracturas Óseas , Metformina , Humanos , Metformina/uso terapéutico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/inducido químicamente , Hipoglucemiantes/uso terapéutico , Fracturas Óseas/epidemiología , Fracturas Óseas/etiología , Fracturas Óseas/prevención & control , Riesgo
19.
Front Pharmacol ; 12: 772190, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899327

RESUMEN

Ankylosing spondylitis (AS) is a chronic inflammatory disease characterized by abnormal bone metabolism, with few effective treatments available. Danshensu [3-(3,4-dihydroxy-phenyl) lactic acid) is a bioactive compound from traditional Chinese medicine with a variety of pharmacologic effects. In the present study, we investigated the pharmacologic effect and molecular mechanism of Danshensu in AS. Potential targets of Danshensu were identified in four drugs-genes databases; and potential pharmacologic target genes in AS were identified in three diseases-genes databases. Differentially expressed genes related to AS were obtained from the Gene Expression Omnibus database. Overlapping targets of Danshensu and AS were determined and a disease-active ingredient-target interaction network was constructed with Cytoscape software. Enrichment analyses of the common targets were performed using Bioconductor. To test the validity of the constructed network, an in vitro model was established by treating osteoblasts from newborn rats with low concentrations of tumor necrosis factor (TNF)-α. Then, the in vitro model and AS fibroblasts were treated with Danshensu (1-10 µM). Osteogenesis was evaluated by alkaline phosphatase staining and activity assay, alizarin red staining, quantitative PCR, and western blotting. We identified 2944 AS-related genes and 406 Danshensu targets, including 47 that were common to both datasets. The main signaling pathways associated with the targets were the c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) pathways. A low concentration of TNF-α (0.01 ng/ml) promoted the differentiation of osteoblasts; this was inhibited by Danshensu, which had the same effect on AS fibroblasts but had the opposite effect on normal osteoblasts. Danshensu also decreased the phosphorylation of JNK and ERK in AS fibroblasts. There results provide evidence that Danshensu exerts an anti-osteogenic effect via suppression of JNK and ERK signaling, highlighting its therapeutic potential for the treatment of AS.

20.
J Pharm Anal ; 11(6): 683-690, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34513115

RESUMEN

Since December 2019, severe acute respiratory syndrome coronavirus 2 has been found to be the culprit in the coronavirus disease 2019 (COVID-19), causing a global pandemic. Despite the existence of many vaccine programs, the number of confirmed cases and fatalities due to COVID-19 is still increasing. Furthermore, a number of variants have been reported. Because of the absence of approved anti-coronavirus drugs, the treatment and management of COVID-19 has become a global challenge. Under these circumstances, drug repurposing is an effective method to identify candidate drugs with a shorter cycle of clinical trials. Here, we summarize the current status of the application of drug repurposing in COVID-19, including drug repurposing based on virtual computer screening, network pharmacology, and bioactivity, which may be a beneficial COVID-19 treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...